Almost-Einstein hypersurfaces in the Euclidean space
نویسندگان
چکیده
منابع مشابه
Pinching of the First Eigenvalue of the Laplacian and almost-Einstein Hypersurfaces of the Euclidean Space
In this paper, we prove new pinching theorems for the first eigenvalue λ1(M) of the Laplacian on compact hypersurfaces of the Euclidean space. These pinching results are associated with the upper bound for λ1(M) in terms of higher order mean curvatures Hk. We show that under a suitable pinching condition, the hypersurface is diffeomorpic and almost isometric to a standard sphere. Moreover, as a...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملLk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE
Chen conjecture states that every Euclidean biharmonic submanifold is minimal. In this paper we consider the Chen conjecture for Lk-operators. The new conjecture (Lk-conjecture) is formulated as follows: If Lkx = 0 then Hk+1 = 0 where x : M → R is an isometric immersion of a Riemannian manifold M into the Euclidean space R, Hk+1 is the (k+1)-th mean curvature of M , and Lk is the linearized ope...
متن کاملBrownian Functionals on Hypersurfaces in Euclidean Space
Using the first exit time for Brownian motion from a smoothly bounded domain in Euclidean space, we define two natural functionals on the space of embedded, compact, oriented, unparametrized hypersurfaces in Euclidean space. We develop explicit formulas for the first variation of each of the functionals and characterize the critical points.
متن کاملcompact hypersurfaces in euclidean space and some inequalities
let (m,g ) be a compact immersed hypersurface of (rn+1,) , λ1 the first nonzeroeigenvalue, α the mean curvature, ρ the support function, a the shape operator, vol (m ) the volume of m,and s the scalar curvature of m. in this paper, we established some eigenvalue inequalities and proved theabove.1) 1 2 2 2 2m ma dv dvn∫ ρ ≥ ∫ α ρ ,2)( )2 2 1 2m 1 mdv s dvn nα ρ ≥ ρ∫ − ∫ ,3) if the scalar curvatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2009
ISSN: 0019-2082
DOI: 10.1215/ijm/1290435347